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ON A VOLUME INTEGRAL EQUATION USED IN SOLVING
3-D ELECTROMAGNETIC INTERIOR SCATTERING
PROBLEMS

Introduction

Given an incident field E™* generated from, for example, an antenna or a
radar, the problem is to estimate the amount of electromagnetic energy depo-
sition in a nearby human object. While this is a classical interior scattering
problem, a versatile and efficient method for solving it in realistic settings is
not generally available [1]. Some recent research in this area can be found in
[3, 4, 5] and their references. Understanding the details of electromagnetic
deposition in humans is essential for health and safety exposure considera-
tions. Knowledge of deposition in humans and non-human animals is very
important to medical research on the bioeffects of radiation exposure.

An approach to solving interior scattering problems is the integral equa-
tion approach. One of the advantages of this approach is that the boundary
conditions of the problem are automatically incorporated into the integral
equation, a feature that is especially useful in solving the corresponding in-
verse problem. For simple problems, the equivalence between the classical
Maxwell’s equations approach and the integral equation approach can easily
be demonstrated. However, for general 3-D problem where the scatterers
may have internal discontinuity in their material properties, this equivalence
is no longer obvious. The purpose of this paper is to re-examine the valid-
ity and applicability of a formulation of a volume integral equation approach
commonly used for solving interior scattering problems. It will be shown that
a popular heuristic derivation of a fundamental volume integral equation is
wanting, as it is mathematically incomplete. A more complete analysis of
the volume integral equation formulation is given. As a by-product, the ap-
plicability of this approach is clarified. It is concluded that this approach can
be applied to a broad class of interior scattering problems including the cal-
culation of electromagnetic energy deposition in arbitrary three-dimensional
inhomogeneous objects commonly encountered in the biomedical sciences.



Preliminary

We assume a dielectric body of finite extent in free space is occupying a region
V, and is radiated by an incident wave. The incident wave is produced by a
source enclosed in another finite region V, which we assume is far away from
the body. The free space outside V; and V, will be denoted by V..

In each of the three regions V;, Vi, and V,, the electric field, E the
magnetic field, H, the displacement, D, and the magnetic induction B satisfy
the Maxwell’s equations. We assume the fields are time harmonic with a time-
dependent factor e/, where 3 is fixed at either 1 or -1. The body, possibly
nonhomogeneous, is assumed to be isotropic, linear, and non-magnetic. Thus,
if B(x,t) = R{E(x)e?**} and H(x,t) = R{H(x )e-”ﬁ“’t} then E and H satisfy:

V X E+ jBwu,H = 0
VxH-jfweE = J

where

€ = {Esaeoaeb}
J = {J,,O,Jb}

in V = {V,,V,, i}, respectively. Here €,, i, are the free space permitivity
and permeability respectively. J is the current density, which when restricted
to V,(W) is J,(Js) . Similarly, the permitivity in Vi(V) is €,(es). Since we
assume the body is linear, J, = cE. Hence, with the usual modification of
ey to include the conductivity, o, we can assume, without loss of generality,

Jpy=0

The incident wave, being the only field present when the body is absent,
satisfies the time-harmonic Maxwell’s equations:

V % Ez'-n.c +jﬁw'uoHinc = 0
V X Hz’nc _ jﬂweincEinc — Jinc
where

™ = {&s5,€0,€0}
Jm = {J,,0,0}
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in V= {V,,V,,Vi}, respectively. (We are making the tacit assumption that
J, is not changed by the presence of the scatterer (body): J™ = J in V,.)
Defining the scattered field E* as E — E™™ and similarly H* as H — H'™,
then (recall J, = 0)

V x E* +jBwp.H’ = 0 (1)
V x H* — jBw(eE — ¢™E™) = 0 (2)

Except possibly in V; (which we will not consider), this system can be written
as

V x E* + jBwpH* = 0 (3)
V x H? — jBwe,E* = I, (4)

where .
Jeqg = JBw(e — €™)E
From the definitions of ¢ and €™, it is clear that Je, vanishes identically
everywhere outside V;, including V.
Combining Equations (3) and (4), we get

V x V x E* — k2E* = —jBwpode, (5)

2 _ 2
7 where k2 = e pow”.

Furthermore, using the vector identity V x V x E* = V(V - E®) — V?E*,
we also get the equation
VE'+KE° =R (6)
where k*(r) = e(r)pow? and
R(r) = —(k(r) — k) E(r) + V(V - E(r))

To solve any of these equivalent equations for the scattered field uniquely,
we need to specify the boundary conditions it must satisfy. Besides requiring
E’ to satisfy the radiation condition, we also require the tangential com-
ponents of E* and H’ (or equivalently, V x E*, since we are assuming a
non-magnetic body) to be continuous across S, the boundary of Vj:

(

fi(r) x E°(r)), = (d(r) x E*(r))_ (7)
i(r) x (V x E*’(r))+ = 1(r) x (V x E*(r))_ (8)



This follows from the boundary conditions on the E and H and the fact
that B¢ is continuous across S;. In the last set of equations, quantities
with a positive (negative) subscript denote values on the exterior (interior)
boundary.

A Heuristic Formulation
In the unbounded free space, it is well-known that the vector equation
V xVxF—EF=—jBwy,d (9)
has a unique solution satisfying the radiation condition. In fact, it is given
by
= 1
F(r)=06(I+ —k—2VV) . /Vg(r,r') J(r') dr’ (10)

where V is the support of J and B, = —jBwpo. Here the function g is the
free-space Green function for the three-dimensional scalar wave equation.

That is to say it satisfies the equation
Vq(r,r') + kog(r,1') = —6(r — 1) (11)

The function g is explicitly given by

. gikolr-r .
P 1
g(r)r) 47r|r_r,|7 ( )

Since Equation (5) has exactly the same form as Equation (9), it is often
concluded therefore that the unique scattered field must also be given by:

E*(r) = 8, (I+ -;%VV) - [ gl x) ua(a?) i (13)

leading to an integral equation for the total field E:

E(r) - (L4 V) [ ofe.r) (B() - K)B() de’ = B™(r)  (14)

While this reasoning is plausible, it is mathematically incomplete, as the issue
of boundary conditions on Sy has not been addressed. In the following, we
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will give a full derivation of an integral equation for the electric field in the
presence of a finite number of bounded scatterers in free space. We assume
each scatterer is piecewise continuously differentiable in e(r). In this deriva-
tion the role of the boundary conditions, both physical and mathematical
(due to discontinuity in € within each scatterer), will be evident.

A Detailed Formulation

We assume the entire 3-dimensional space can be represented as the dis-
joint union of a finite number (N +2) of sub-regions, Vi (£ =0,...,N+1). All
sub-regions are bounded except one. V, will be reserved for this unbounded
sub-region and it represents the free space exterior to all the scatterers to-
gether with one (assumed for simplicity) sub-region V., that contains the
source that generates the incident field. Thus,

k=N+1
RP= | W% (15)
k=0

We assume £(r) is continuously differentiable in each sub-region with possi-
ble discontinuity at the boundary. In general there will be more sub-regions
than there are scatterers, as each scatterer may have to be represented by
more than one sub-region on which e(r) is continuously differentiable. This
formulation is quite general and includes the important piecewise homoge-
neous case, which is often used to model human organs or even the complete
human body.

We start with a well-known variant of the Green’s theorem involving a
vector field F(r) and a scalar field f(r). Assuming both fields are defined on a
connected region V with a smooth boundary surface S and are continuously
differentiable, then this particular variant of the Green’s theorem takes the
form:

/;,{fsz-—szf] v = /;[(V’F)fﬁ—(ﬁ-F)Vf
—ix(VxF)f — (fixF)x(Vf)]dS (16)

Here fi is the unit vector normal to the surface S of V pointing into the
exterior of V. When more specificity is required, this unit normal vector is
also denoted by ﬁ:.



In each sub-region V4, (k = 0,..., N), the electric field E satisfies Equa-
tion (6) also. In the source region Vyii, E satisfies Equation (6) with a
modified R ( R + jBwp.d, ) that accounts for the source that generates the
incident field. In any case, if we let V = V4, F(r) = E(r), and f(r) = g(r,r’)
in Equation (16), where r' is any point not on the boundary 8Vi of Vi, we
readily obtain, using Equations (6) and (11), the integral equation

E(r)8(r, ) = — [ R(x)glr,)dV +Su(r) (17)
k
where ; ;
1 for r in the interior of V
8(r, V) = { 0 for r in the exterior of V' (18)
and
Sk(r') = Sd(r’; 8Vi, V) + SG(r', —1; 8Vk, Vi) + X (') (19)
and where
R — . ! “Vk
Sd(x; 0V, i) = [ (V-B, (r))g(r,r)a}% (v)dS
SG(r', a(+); 0Vk, Vi) = /8 .. er) (8% (r)-E, (r)) Vo(r,x')dS
Xi(r') = — [ @ (r)x (VxE_(r))g(r,r')dS
vV, Vi Vi
_ /a Vk(ﬁ:;k (r) x E, (r)) x Vg(r,r') dS  (20)

For r on the boundary 0V, EVk (r) = limpyy E(r') for r’ in V;. The same
holds for a(r). By definition, SG(r', a; 0%, Vi) is linear in a. Hence,

e, (¥)
SG(r',—1;0Vi, &) = SG(r’, ”; — 1; Vi, Vi) + Yi(r') (21)
Ve
where
£, (*)
Yale) = ~SGE, 200, ) (22)
Vo
Equation (17) now becomes
E(r)6(r, Vi) = - /V R(r) g(r,r') dV
6




e, (*)
v,

+ Xi(r') + Yi(r) (23)

+ Sd(r';0Vk, Vi) + SG(r', - 1,0k, Vi)

The following proposition allows one to convert the two surface integrals Sd
and SG in Equation {23) into volume integrals GdV and VGd defined as

GAV(K,a(+);V) = V'V’ /V o(r)E(r) g(r, ') dV

VGd(r; V) = /V V(V-E(r)) g(r,r') dV (24)

Proposition A. Suppose a(r) is continuously differentiable in a bounded
region V with smooth boundary 8V such that V- (a(r) + 1) E(r) =0in V,
then

Sd(r'; 8V, V) + SG(r', a(x); 6V, V) = GAV(r', a(*); V) + VGd(r'; V) (25)

Proof. This proposition basically follows from the application of the
Divergence Theorem and the use of appropriate vector identities involving
gradient and divergence. In particular, one can readily show

/W(V-E)ngdS - /VV(V-E)g—F/V(Vg)V-EdV
/ava(n-E)ngS = V'V -/VaEng—/V(Vg)V-EdV
_ V’/E-Vang
14
v . 9
v /V(a+1)gV EdV (26)

The proposition is proved by showing the sum of the last two integrals is zero
because of the assumption on a.

Now summing Equation (23) over all sub-regions V,(k=0,...,N + 1) and
using Proposition A and the definition of R (appropriately modified for the
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source region), we readily obtain for r’ not on Vi, (k =0,...,N +1)

E(r) = /;,b(kz(r)——kg)E(r)g(r,r’)dV

+ V'V'-‘/;fb-(ﬁz—(ill—g_—kQE(r)g(r,r’)dV

k=N+1
+ 2 (Xe(r') + Ya(r)

k=0

+ Erem (r/) (27)
where V; is the union of all the sub-regions representing the scatterers and
Erem is

En(r) = — / (R(r) + 78wpoT.(r)) g(r,r') dV

VN1

+ Snia(r') — Xy (r') — Yv(r)

Equation (27) is a representation of any solution of the Maxwell’s Equations.
To determine the unique solution to the scattering problem, we need to
impose appropriate boundary conditions: Equations (7) and (8) and the
radiation condition.

Proposition B. If E satisfies the boundary conditions in Equations (7)
and (8) and the radiation condition, then

k=N+1

g Xe(r') = 0 (28)

Proof. The boundary 8V; of each sub-region Vi,(k = 0,...,N + 1)

is made up of ny > 1 smooth sub-surfaces Ski(2=1,... ,nk). Since each
sub-surface Sk, if it is bounded, is the surface of or is part of the surface of
exactly two sub-regions, it appears exactly twice in the sum in (28). Suppose
a sub-surface S is a surface between two sub-regions V; and V5, then its total
contribution Cx to the sum in (28) is

(r) x (V< E_ (r))]g(r,) d5

2
s

Cx = —/S[ﬁ‘sfl (r) x (VX E, () + &
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- [I@86) x B, () + (B%() x B, (1))] x Vo(r,r') dS

s

However, since ﬁ:l (r) = —ﬁ:’ (r), it follows from the boundary conditions

(7) and (8) that Cx vanishes. For the sole unbounded surface (the bounding
surface of V, at infinity), its contribution to the sum in (28) also vanishes
due to the radiation condition.

Proposition C. IfE satisfies the boundary condition in Equation (8) then

k=N4+1

kz_% Yi(r)=0 (29)

Proof. As in Proposition B, suppose a sub-surface S is a surface between
two sub-regions V; and V5, then its total contribution Cy to the sum in (29)
is

or = - [egir)(ﬁ;’1<r> E, (1))
e, ()

As a consequence of Equation (8) [2], we have
e, (r)a? -E=¢ (r)a’*-E, (30)

the familiar boundary condition on the normal component of D. (We could
have made use of Equation (30) directly without referencing its connection
with Equation (8), but this would have obscured the fact that the bound-
ary conditions on the tangential components of E* and H* alone uniquely
determined the field.) Again, because ﬁ:‘ (r)= —ﬁ:’ (r), Cy vanishes.

Because of Propositions B and C, Equation (27) becomes

B() = [ (W) ~K)EE)g(r,x) v

9



+ V'V’ ‘/;,b (—’i(%%—gﬁ)- E(r) g(r,r')dV
+ E™™(x") (31)

Finally, when k*(r) = k%(r), Equation (31) reduces to E = E™™. Thus,
E™ = E™° by definition. Hence, for ¥’ not on any boundary,
B(r) = [ (@) K)EE) glrr)av
b

+ Vlvl"/‘./ (kz(rllz_ kg)
+ E™ () (32)

E(r) g(r,r')dV

Which is exactly Equation (14).

Conclusion

We have given in this report a detailed derivation of a volume integral
equation that can be used to solve interior scattering problems when the
material property of the scatterer is piecewise continuously differentiable.

While it is natural to make the distinction between the physical (exter-
nal) boundary of the scatterer and its mathematical (internal) boundaries
(which arise when there is a discontinuity of material property), all physi-
cal boundaries are generally mathematical boundaries and vice versa. Thus,
mathematical boundaries should be treated with as much care as with phys-
ical boundaries. Furthermore, different types of discontinuities may require
different treatment. In fact, in Miiller’s classical text [2], he made a careful
distinction between the case where the material property has a discontinu-
ity in the derivative of €(r) at the boundary and the case where it has a
simple jump in €(r) at the boundary. This suggests that care should be exer-
cised when dealing with scatterers with piecewise continuously differentiable
material property.

Indeed the volume integral equation we derived here is based on a careful
treatment of boundary conditions. The derivation clearly shows the roles
played by boundary conditions on both the physical boundary and mathe-

matical boundary.

10




That our formulation turns out to be exactly the same as that derived
heuristically (without addressing boundary conditions) is also reassuring.
Our formulation is valid provided the observation point is not on a boundary,
internal or otherwise. .

Finally, with regard to implementation, Equation (32) is generally not
used directly because of the difficulty with differentiating inexact data. How-
ever, because of the additivity of integration over volume, a Lippman-Schwinger
type equation can be obtained by moving I + VV under the integral in
Equation (32). This will be valid provided the observation point r is not
on a boundary and that proper account is taken of the singularity of the
resulting Dyadic Green’s Function (in 3-D). Furthermore, numerical imple-
mentation of this formulation will likely be more accurate if fewer cells in the
mesh straddle surfaces of discontinuity. Hence a mesh of tetrahedra would
be more suitable than a mesh of rectangular blocks if the scatterer is highly
inhomogeneous, as in the case of the human body.

11



References

[1]

Jaroszewicz, T. "Fast Integral Equation Solver for Propagation of Elec-
tromagnetic Pulses through Inhomogeneous Irregularly Shaped Disper-
sive Media,” USAF Armstrong Laboratory Tech. Report MN-94-0008,

1994.

Miiller, C. ”Foundations of the Mathematical Theory of Electromagnetic
Waves,” Springer-Verlag New York, 1969.

Yuan, X., Lynch, D.R., and Strohbehn, J.W. ”Coupling of Finite Ele-
ment and Moment Methods for Electromagnetic Scattering from Inho-
mogeneous Objects,” IEEE Trans. Antennas Propagat., vol. AP-38, pp.
386-393, March 1990.

Yuan, X. ” Three-Dimensional Electromagnetic Scattering from Inhomo-
geneous Objects by the Hybrid Moment and Finite Element Method,”
IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1053-1058, August,
1990.

Zwamborn, A.P.M., van den Berg, P.M., Mooibroek, J., and Koe-
nis, F.T.C. "Computation of Three-Dimensional Electromagnetic-Field
Distributions in Human Body Using the Weak Form of the CGFFT
Method,” Appl. Comp. Electromag. Soc. J., vol. 7, pp. 26-42, 1992.

12




